深度学习之目标检测常用算法原理+实践精讲(完结)
获课:www.bcwit.top/1083/ 获取ZY↑↑方打开链接↑↑ 第一章:目标检测基础 任务定义与挑战 目标检测 vs 图像分类 / 分割 核心挑战:多尺度、遮挡、小目标、背景干扰 基础概念 边界框(Bounding Box)表示与回归 交并比(IoU)与非极大值抑制(NMS) 锚框(Anchor Box)机制 数据集与评价指标 COCO、VOC、OpenImages 数据集解析 mAP(平均精度均值)计算与可视化 第二章:经典目标检测算法 两阶段检测框架 R-CNN(2014):候选区域提取 + 特征提取 + 分类回归 Fast R-CNN(2015):共享卷积特征与多任务损失 Faster R-CNN(2016):区域建议网络(RPN)的引入 R-CNN 系列 Mask R-CN...阅读全文